\(\newcommand{\W}[1]{ \; #1 \; }\) \(\newcommand{\R}[1]{ {\rm #1} }\) \(\newcommand{\B}[1]{ {\bf #1} }\) \(\newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} }\) \(\newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} }\) \(\newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} }\) \(\newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }\)
thread_test.cpp¶
View page sourceRun Multi-Threading Examples and Speed Tests¶
Purpose¶
Runs the CppAD multi-threading examples and timing tests:
build¶
We use build for the directory where you run the cmake command.
threading¶
If the cmake command output indicates that
openmp
, bthread
, pthread
, or sthread
is available,
you can run the program below with threading equal to
openmp
, bthread
, pthread
, or sthread
respectively.
program¶
We use the notation program for
example_multi_thread_
threading
Running Tests¶
You can build this program and run the default version of its test parameters by executing the following commands:
cd
buildmake check_
programAfter this operation, in the directory
build /
example/multi_thread/
threading
you can execute the following commands:
a11c
get_started
team_example
harmonic
test_time max_threads mega_sumatomic_two
test_time max_threads num_solveatomic_three
test_time max_threads num_solvechkpoint_one
test_time max_threads num_solvechkpoint_two
test_time max_threads num_solvemulti_newton
test_time max_threads \We refer to the values a11c
, … , multi_newton
as the test_case below.
a11c¶
The test_case a11c
runs the examples
a11c_openmp.cpp ,
a11c_bthread.cpp ,
a11c_pthread.cpp , and
a11c_sthread.cpp .
These cases demonstrate simple multi-threading,
without algorithmic differentiation, using
OpenMP, Boost Posix and Standard threads respectively.
get_started¶
The test_case get_started
runs the examples
openmp_get_started.cpp ,
bthread_get_started.cpp ,
pthread_get_started.cpp , and
sthread_get_started.cpp .
These cases demonstrate simple multi-threading,
with algorithmic differentiation, using
OpenMP, Boost Posix and Standard threads respectively.
team_example¶
The test_case team_example
runs the
team_example.cpp example.
This case demonstrates simple multi-threading with algorithmic differentiation
and using a team of threads .
test_time¶
All of the other cases include the test_time argument. This is the minimum amount of wall clock time that the test should take. The number of repeats for the test will be increased until this time is reached. The reported time is the total wall clock time divided by the number of repeats.
max_threads¶
All of the other cases include the max_threads argument. This is a non-negative integer specifying the maximum number of threads to use for the test. The specified test is run with the following number of threads:
num_threads = 0 , … , max_threads
The value of zero corresponds to not using the multi-threading system.
harmonic¶
The test_case harmonic
runs the
harmonic_time example.
This is a timing test for a multi-threading
example without algorithmic differentiation using a team of threads.
mega_sum¶
The command line argument mega_sum is an integer greater than or equal one and has the same meaning as in harmonic_time .
Atomic and Checkpoint¶
The test_case values
atomic_two
,
atomic_three
,
chkpoint_one
,
chkpoint_two
,
all run the same problem.
These cases preforms a timing test for a multi-threading
example without algorithmic differentiation using a team of threads.
test_case |
Documentation |
|
|
|
|
|
|
|
num_solve¶
The command line argument num_solve
is an integer specifying the number of solves; see
num_solve in multi_atomic_two_time
.
multi_newton¶
The test_case multi_newton
runs the
multi_newton.cpp example.
This preforms a timing test for a multi-threading
example with algorithmic differentiation using a team of threads.
num_zero¶
The command line argument num_zero is an integer greater than or equal two and has the same meaning as in multi_newton_time .
num_sub¶
The command line argument num_sub is an integer greater than or equal one and has the same meaning as in multi_newton_time .
num_sum¶
The command line argument num_sum is an integer greater than or equal one and has the same meaning as in multi_newton_time .
use_ad¶
The command line argument use_ad is either
true
or false
and has the same meaning as in
multi_newton_time .
Team Implementations¶
The following routines are used to implement the specific threading systems through the common interface team_thread.hpp :
team_openmp.cpp |
|
team_bthread.cpp |
|
team_pthread.cpp |
|
team_sthread.cpp |
Source¶
# include <cppad/cppad.hpp>
# include <cmath>
# include <cstring>
# include <ctime>
# include "team_thread.hpp"
# include "team_example.hpp"
# include "harmonic.hpp"
# include "multi_atomic_two.hpp"
# include "multi_atomic_three.hpp"
# include "multi_chkpoint_one.hpp"
# include "multi_chkpoint_two.hpp"
# include "multi_newton.hpp"
extern bool a11c(void);
extern bool get_started(void);
namespace {
size_t arg2size_t(
const char* arg ,
int limit ,
const char* error_msg )
{ int i = std::atoi(arg);
if( i >= limit )
return size_t(i);
std::cerr << "value = " << i << std::endl;
std::cerr << error_msg << std::endl;
exit(1);
}
double arg2double(
const char* arg ,
double limit ,
const char* error_msg )
{ double d = std::atof(arg);
if( d >= limit )
return d;
std::cerr << "value = " << d << std::endl;
std::cerr << error_msg << std::endl;
exit(1);
}
}
int main(int argc, char *argv[])
{ using CppAD::thread_alloc;
bool ok = true;
using std::cout;
using std::endl;
// commnd line usage message
const char* usage =
"./<program> a11c\n"
"./<program> get_started\n"
"./<program> team_example\n"
"./<program> harmonic test_time max_threads mega_sum\n"
"./<program> atomic_two test_time max_threads num_solve\n"
"./<program> atomic_three test_time max_threads num_solve\n"
"./<program> chkpoint_one test_time max_threads num_solve\n"
"./<program> chkpoint_two test_time max_threads num_solve\n"
"./<program> multi_newton test_time max_threads \\\n"
" num_zero num_sub num_sum use_ad\\\n"
"where <program> is example_multi_thread_<threading>\n"
"and <threading> is openmp, bthread, pthread, or sthread";
// command line argument values (assign values to avoid compiler warnings)
size_t num_zero=0, num_sub=0, num_sum=0;
bool use_ad=true;
// put the date and time in the output file
std::time_t rawtime;
std::time( &rawtime );
const char* gmt = std::asctime( std::gmtime( &rawtime ) );
size_t len = size_t( std::strlen(gmt) );
cout << "gmtime = '";
for(size_t i = 0; i < len; i++)
if( gmt[i] != '\n' ) cout << gmt[i];
cout << "';" << endl;
// CppAD version number
cout << "cppad_version = '" << CPPAD_PACKAGE_STRING << "';" << endl;
// put the team name in the output file
cout << "thread_system = '" << team_name() << "';" << endl;
// print command line as valid matlab/octave
cout << "command = '" << argv[0];
for(int i = 1; i < argc; i++)
cout << " " << argv[i];
cout << "';" << endl;
ok = false;
const char* test_name = "";
if( argc > 1 )
test_name = *++argv;
bool run_a11c = std::strcmp(test_name, "a11c") == 0;
bool run_get_started = std::strcmp(test_name, "get_started") == 0;
bool run_team_example = std::strcmp(test_name, "team_example") == 0;
bool run_harmonic = std::strcmp(test_name, "harmonic") == 0;
bool run_atomic_two = std::strcmp(test_name, "atomic_two") == 0;
bool run_atomic_three = std::strcmp(test_name, "atomic_three") == 0;
bool run_chkpoint_one = std::strcmp(test_name, "chkpoint_one") == 0;
bool run_chkpoint_two = std::strcmp(test_name, "chkpoint_two") == 0;
bool run_multi_newton = std::strcmp(test_name, "multi_newton") == 0;
if( run_a11c || run_get_started || run_team_example )
ok = (argc == 2);
else if( run_harmonic
|| run_atomic_two
|| run_atomic_three
|| run_chkpoint_one
|| run_chkpoint_two )
ok = (argc == 5);
else if( run_multi_newton )
ok = (argc == 8);
if( ! ok )
{ std::cerr << "test_name = " << test_name << endl;
std::cerr << "argc = " << argc << endl;
std::cerr << usage << endl;
exit(1);
}
if( run_a11c || run_get_started || run_team_example )
{ if( run_a11c )
ok = a11c();
else if( run_get_started )
ok = get_started();
else
ok = team_example();
if( thread_alloc::free_all() )
cout << "free_all = true;" << endl;
else
{ ok = false;
cout << "free_all = false;" << endl;
}
if( ok )
cout << "OK = true;" << endl;
else cout << "OK = false;" << endl;
return ! ok;
}
// test_time
double test_time = arg2double( *++argv, 0.,
"run: test_time is less than zero"
);
// max_threads
size_t max_threads = arg2size_t( *++argv, 0,
"run: max_threads is less than zero"
);
size_t mega_sum = 0; // assignment to avoid compiler warning
size_t num_solve = 0;
if( run_harmonic )
{ // mega_sum
mega_sum = arg2size_t( *++argv, 1,
"run: mega_sum is less than one"
);
}
else if( run_atomic_two
|| run_atomic_three
|| run_chkpoint_one
|| run_chkpoint_two )
{ // num_solve
num_solve = arg2size_t( *++argv, 1,
"run: num_solve is less than one"
);
}
else
{ ok &= run_multi_newton;
if( ! ok )
{ cout << "thread_test: program error\n";
return ! ok;
}
// num_zero
num_zero = arg2size_t( *++argv, 2,
"run: num_zero is less than two"
);
// num_sub
num_sub = arg2size_t( *++argv, 1,
"run: num_sub is less than one"
);
// num_sum
num_sum = arg2size_t( *++argv, 1,
"run: num_sum is less than one"
);
// use_ad
++argv;
if( std::strcmp(*argv, "true") == 0 )
use_ad = true;
else if( std::strcmp(*argv, "false") == 0 )
use_ad = false;
else
{ std::cerr << "run: use_ad = '" << *argv;
std::cerr << "' is not true or false" << endl;
exit(1);
}
}
// run the test for each number of threads
cout << "time_all = [" << endl;
for(size_t num_threads = 0; num_threads <= max_threads; num_threads++)
{ double time_out;
bool this_ok;
// run the requested test
if( run_harmonic ) this_ok = harmonic_time(
time_out, test_time, num_threads, mega_sum
);
else if( run_atomic_two ) this_ok = multi_atomic_two_time(
time_out, test_time, num_threads, num_solve
);
else if( run_atomic_three ) this_ok = multi_atomic_three_time(
time_out, test_time, num_threads, num_solve
);
else if( run_chkpoint_one ) this_ok = multi_chkpoint_one_time(
time_out, test_time, num_threads, num_solve
);
else if( run_chkpoint_two ) this_ok = multi_chkpoint_two_time(
time_out, test_time, num_threads, num_solve
);
else
{ assert( run_multi_newton);
this_ok = multi_newton_time(
time_out ,
test_time ,
num_threads ,
num_zero ,
num_sub ,
num_sum ,
use_ad
);
}
// time_out
cout << std::setw(20) << time_out << " % ";
// num_threads
if( num_threads == 0 )
cout << "no threading";
else
cout << num_threads << " threads";
if( this_ok )
cout << " ok" << endl;
else
cout << " error" << endl;
//
ok &= this_ok;
}
cout << "];" << endl;
//
if( thread_alloc::free_all() )
cout << "free_all = true;" << endl;
else
{ ok = false;
cout << "free_all = false;" << endl;
}
if( ok )
cout << "OK = true;" << endl;
else cout << "OK = false;" << endl;
return ! ok;
}