thread_test.cpp

View page source

Run Multi-Threading Examples and Speed Tests

Purpose

Runs the CppAD multi-threading examples and timing tests:

build

We use build for the directory where you run the cmake command.

threading

If the cmake command output indicates that bthread , pthread , or openmp is available, you can run the program below with threading equal to bthread , pthread , or openmp respectively.

program

We use the notation program for

example_multi_thread_ threading

Running Tests

You can build this program and run the default version of its test parameters by executing the following commands:

      cd build
      make check_ program

After this operation, in the directory

build / example/multi_thread/ threading

you can execute the following commands:

.
./ program a11c
./ program get_started
./ program team_example
./ program harmonic test_time max_threads mega_sum
./ program atomic_two test_time max_threads num_solve
./ program atomic_three test_time max_threads num_solve
./ program chkpoint_one test_time max_threads num_solve
./ program chkpoint_two test_time max_threads num_solve
./ program multi_newton test_time max_threads \
      num_zero num_sub num_sum use_ad

We refer to the values a11c , … , multi_newton as the test_case below.

a11c

The test_case a11c runs the examples a11c_openmp.cpp , a11c_bthread.cpp , and a11c_pthread.cpp . These cases demonstrate simple multi-threading, without algorithmic differentiation, using OpenMP, boost threads and pthreads respectively.

get_started

The test_case get_started runs the examples openmp_get_started.cpp , bthread_get_started.cpp , and pthread_get_started.cpp . These cases demonstrate simple multi-threading, with algorithmic differentiation, using OpenMP, boost threads and pthreads respectively.

team_example

The test_case team_example runs the team_example.cpp example. This case demonstrates simple multi-threading with algorithmic differentiation and using a team of threads .

test_time

All of the other cases include the test_time argument. This is the minimum amount of wall clock time that the test should take. The number of repeats for the test will be increased until this time is reached. The reported time is the total wall clock time divided by the number of repeats.

max_threads

All of the other cases include the max_threads argument. This is a non-negative integer specifying the maximum number of threads to use for the test. The specified test is run with the following number of threads:

num_threads = 0 , … , max_threads

The value of zero corresponds to not using the multi-threading system.

harmonic

The test_case harmonic runs the harmonic_time example. This is a timing test for a multi-threading example without algorithmic differentiation using a team of threads.

mega_sum

The command line argument mega_sum is an integer greater than or equal one and has the same meaning as in harmonic_time .

Atomic and Checkpoint

The test_case values atomic_two , atomic_three , chkpoint_one , chkpoint_two , all run the same problem. These cases preforms a timing test for a multi-threading example without algorithmic differentiation using a team of threads.

test_case

Documentation

atomic_two

multi_atomic_two.cpp

atomic_three

multi_atomic_three.cpp

chkpoint_one

multi_chkpoint_one.cpp

chkpoint_two

multi_chkpoint_two.cpp

num_solve

The command line argument num_solve is an integer specifying the number of solves; see num_solve in multi_atomic_two_time .

multi_newton

The test_case multi_newton runs the multi_newton.cpp example. This preforms a timing test for a multi-threading example with algorithmic differentiation using a team of threads.

num_zero

The command line argument num_zero is an integer greater than or equal two and has the same meaning as in multi_newton_time .

num_sub

The command line argument num_sub is an integer greater than or equal one and has the same meaning as in multi_newton_time .

num_sum

The command line argument num_sum is an integer greater than or equal one and has the same meaning as in multi_newton_time .

use_ad

The command line argument use_ad is either true or false and has the same meaning as in multi_newton_time .

Team Implementations

The following routines are used to implement the specific threading systems through the common interface team_thread.hpp :

Source

# include <cppad/cppad.hpp>
# include <cmath>
# include <cstring>
# include <ctime>
# include "team_thread.hpp"
# include "team_example.hpp"
# include "harmonic.hpp"
# include "multi_atomic_two.hpp"
# include "multi_atomic_three.hpp"
# include "multi_chkpoint_one.hpp"
# include "multi_chkpoint_two.hpp"
# include "multi_newton.hpp"

extern bool a11c(void);
extern bool get_started(void);

namespace {
   size_t arg2size_t(
      const char* arg       ,
      int limit             ,
      const char* error_msg )
   {  int i = std::atoi(arg);
      if( i >= limit )
         return size_t(i);
      std::cerr << "value = " << i << std::endl;
      std::cerr << error_msg << std::endl;
      exit(1);
   }
   double arg2double(
      const char* arg       ,
      double limit          ,
      const char* error_msg )
   {  double d = std::atof(arg);
      if( d >= limit )
         return d;
      std::cerr << "value = " << d << std::endl;
      std::cerr << error_msg << std::endl;
      exit(1);
   }
}

int main(int argc, char *argv[])
{  using CppAD::thread_alloc;
   bool ok         = true;
   using std::cout;
   using std::endl;

   // commnd line usage message
   const char* usage =
   "./<program> a11c\n"
   "./<program> get_started\n"
   "./<program> team_example\n"
   "./<program> harmonic     test_time max_threads mega_sum\n"
   "./<program> atomic_two   test_time max_threads num_solve\n"
   "./<program> atomic_three test_time max_threads num_solve\n"
   "./<program> chkpoint_one test_time max_threads num_solve\n"
   "./<program> chkpoint_two test_time max_threads num_solve\n"
   "./<program> multi_newton test_time max_threads \\\n"
   "   num_zero num_sub num_sum use_ad\\\n"
   "where <program> is example_multi_thread_<threading>\n"
   "and <threading> is bthread, openmp, or pthread";

   // command line argument values (assign values to avoid compiler warnings)
   size_t num_zero=0, num_sub=0, num_sum=0;
   bool use_ad=true;

   // put the date and time in the output file
   std::time_t rawtime;
   std::time( &rawtime );
   const char* gmt = std::asctime( std::gmtime( &rawtime ) );
   size_t len = size_t( std::strlen(gmt) );
   cout << "gmtime        = '";
   for(size_t i = 0; i < len; i++)
      if( gmt[i] != '\n' ) cout << gmt[i];
   cout << "';" << endl;

   // CppAD version number
   cout << "cppad_version = '" << CPPAD_PACKAGE_STRING << "';" << endl;

   // put the team name in the output file
   cout << "thread_system = '" << team_name() << "';" << endl;

   // print command line as valid matlab/octave
   cout << "command       = '" << argv[0];
   for(int i = 1; i < argc; i++)
      cout << " " << argv[i];
   cout << "';" << endl;

   ok = false;
   const char* test_name = "";
   if( argc > 1 )
      test_name = *++argv;
   bool run_a11c         = std::strcmp(test_name, "a11c")             == 0;
   bool run_get_started  = std::strcmp(test_name, "get_started")      == 0;
   bool run_team_example = std::strcmp(test_name, "team_example")     == 0;
   bool run_harmonic     = std::strcmp(test_name, "harmonic")         == 0;
   bool run_atomic_two   = std::strcmp(test_name, "atomic_two")       == 0;
   bool run_atomic_three = std::strcmp(test_name, "atomic_three")     == 0;
   bool run_chkpoint_one = std::strcmp(test_name, "chkpoint_one")     == 0;
   bool run_chkpoint_two = std::strcmp(test_name, "chkpoint_two")     == 0;
   bool run_multi_newton = std::strcmp(test_name, "multi_newton")     == 0;
   if( run_a11c || run_get_started || run_team_example )
      ok = (argc == 2);
   else if( run_harmonic
   || run_atomic_two
   || run_atomic_three
   || run_chkpoint_one
   || run_chkpoint_two )
      ok = (argc == 5);
   else if( run_multi_newton )
      ok = (argc == 8);
   if( ! ok )
   {  std::cerr << "test_name     = " << test_name << endl;
      std::cerr << "argc          = " << argc      << endl;
      std::cerr << usage << endl;
      exit(1);
   }
   if( run_a11c || run_get_started || run_team_example )
   {  if( run_a11c )
         ok        = a11c();
      else if( run_get_started )
         ok        = get_started();
      else
         ok        = team_example();
      if( thread_alloc::free_all() )
         cout << "free_all      = true;"  << endl;
      else
      {  ok = false;
         cout << "free_all      = false;" << endl;
      }
      if( ok )
         cout << "OK            = true;"  << endl;
      else cout << "OK            = false;" << endl;
      return ! ok;
   }

   // test_time
   double test_time = arg2double( *++argv, 0.,
      "run: test_time is less than zero"
   );

   // max_threads
   size_t max_threads = arg2size_t( *++argv, 0,
      "run: max_threads is less than zero"
   );

   size_t mega_sum  = 0; // assignment to avoid compiler warning
   size_t num_solve = 0;
   if( run_harmonic )
   {  // mega_sum
      mega_sum = arg2size_t( *++argv, 1,
         "run: mega_sum is less than one"
      );
   }
   else if( run_atomic_two
   || run_atomic_three
   || run_chkpoint_one
   || run_chkpoint_two )
   {  // num_solve
      num_solve = arg2size_t( *++argv, 1,
         "run: num_solve is less than one"
      );
   }
   else
   {  ok &= run_multi_newton;
      if( ! ok )
      {  cout << "thread_test: program error\n";
         return ! ok;
      }

      // num_zero
      num_zero = arg2size_t( *++argv, 2,
         "run: num_zero is less than two"
      );

      // num_sub
      num_sub = arg2size_t( *++argv, 1,
         "run: num_sub is less than one"
      );

      // num_sum
      num_sum = arg2size_t( *++argv, 1,
         "run: num_sum is less than one"
      );

      // use_ad
      ++argv;
      if( std::strcmp(*argv, "true") == 0 )
         use_ad = true;
      else if( std::strcmp(*argv, "false") == 0 )
         use_ad = false;
      else
      {  std::cerr << "run: use_ad = '" << *argv;
         std::cerr << "' is not true or false" << endl;
         exit(1);
      }
   }

   // run the test for each number of threads
   cout << "time_all  = [" << endl;
   for(size_t num_threads = 0; num_threads <= max_threads; num_threads++)
   {  double time_out;
      bool this_ok;

      // run the requested test
      if( run_harmonic ) this_ok = harmonic_time(
         time_out, test_time, num_threads, mega_sum
      );
      else if( run_atomic_two ) this_ok = multi_atomic_two_time(
         time_out, test_time, num_threads, num_solve
      );
      else if( run_atomic_three ) this_ok = multi_atomic_three_time(
         time_out, test_time, num_threads, num_solve
      );
      else if( run_chkpoint_one ) this_ok = multi_chkpoint_one_time(
         time_out, test_time, num_threads, num_solve
      );
      else if( run_chkpoint_two ) this_ok = multi_chkpoint_two_time(
         time_out, test_time, num_threads, num_solve
      );
      else
      {  assert( run_multi_newton);
         this_ok = multi_newton_time(
            time_out                ,
            test_time               ,
            num_threads             ,
            num_zero                ,
            num_sub                 ,
            num_sum                 ,
            use_ad
         );
      }
      // time_out
      cout << std::setw(20) << time_out << " % ";
      // num_threads
      if( num_threads == 0 )
         cout << "no threading";
      else
         cout << num_threads << " threads";
      if( this_ok )
         cout << " ok" << endl;
      else
         cout << " error" << endl;
      //
      ok &= this_ok;
   }
   cout << "];" << endl;
   //
   if( thread_alloc::free_all() )
      cout << "free_all      = true;"  << endl;
   else
   {  ok = false;
      cout << "free_all      = false;" << endl;
   }
   if( ok )
      cout << "OK            = true;"  << endl;
   else cout << "OK            = false;" << endl;

   return  ! ok;
}