\(\newcommand{\W}[1]{ \; #1 \; }\) \(\newcommand{\R}[1]{ {\rm #1} }\) \(\newcommand{\B}[1]{ {\bf #1} }\) \(\newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} }\) \(\newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} }\) \(\newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} }\) \(\newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }\)
atomic_four_lin_ode_rev_depend.hpp¶
View page sourceAtomic Linear ODE Forward Type Calculation: Example Implementation¶
Purpose¶
The rev_depend
routine overrides the virtual functions
used by the atomic_four base; see
rev_depend .
Notation¶
We use the notation: call_id r pattern transpose nnz , row , col , x , n , A(x) , b(x) , y(x) , m , vk(x) , and the following additional notation:
wk(x)¶
Note that the factor \(r / k\), in the definition of \(v^k (x)\), is constant (with respect to the variables). Hence it suffices to compute the dependency for
where \(w^0 (x) = b(x)\) and for \(k = 1, 2, \ldots\), \(w^k (x) = A(x) w^{k-1} (x)\).
Source¶
# include <cppad/example/atomic_four/lin_ode/lin_ode.hpp>
namespace CppAD { // BEGIN_CPPAD_NAMESPACE
//
// rev_depend override
template <class Base>
bool atomic_lin_ode<Base>::rev_depend(
size_t call_id,
const CppAD::vector<bool>& ident_zero_x,
CppAD::vector<bool>& depend_x,
const CppAD::vector<bool>& depend_y
)
{
// nnz
Base r;
Base step;
sparse_rc pattern;
bool transpose;
get(call_id, r, step, pattern, transpose);
size_t nnz = pattern.nnz();
//
// m
size_t m = depend_y.size();
CPPAD_ASSERT_UNKNOWN( ident_zero_x.size() == depend_x.size() );
CPPAD_ASSERT_UNKNOWN( pattern.nr() == m );
CPPAD_ASSERT_UNKNOWN( pattern.nc() == m );
//
// depend_w
CppAD::vector<bool> depend_w = depend_y;
//
// depend_x
for(size_t p = 0; p < nnz; ++p)
depend_x[p] = false;
for(size_t i = 0; i < m; ++i)
depend_x[nnz + i] = depend_y[i];
//
// change
// Did depend_w change during the previous iteration of the while loop
bool change = true;
while(change)
{ change = false;
// we use k = 1, 2, ... to denote the pass through this loop
//
// depend_w, depend_x
// include depenency for w^k (x)
for(size_t p = 0; p < nnz; ++p) if( ! ident_zero_x[p] )
{ size_t i = pattern.row()[p];
size_t j = pattern.col()[p];
if( transpose )
std::swap(i, j);
//
// back propagate depenency on y
if( depend_w[i] && ! depend_w[j] )
{ change = true;
depend_w[j] = true;
}
//
// depend_x
// for propage dependency on A_{i,j}
if( depend_w[i] && ! depend_x[p] )
{ change = true;
depend_x[p] = true;
}
}
}
//
// depend_x
// terms corresponding to b(x)
for(size_t i = 0; i < m; ++i)
depend_x[nnz + i] = depend_w[i];
//
return true;
}
} // END_CPPAD_NAMESPACE