sin_cos_forward

View page source

Trigonometric and Hyperbolic Sine and Cosine Forward Theory

Differential Equation

The standard math function differential equation is

\[B(u) * F^{(1)} (u) - A(u) * F (u) = D(u)\]

In this sections we consider forward mode for the following choices:

\(F(u)\)

\(\sin(u)\)

\(\cos(u)\)

\(\sinh(u)\)

\(\cosh(u)\)

\(A(u)\)

\(0\)

\(0\)

\(0\)

\(0\)

\(B(u)\)

\(1\)

\(1\)

\(1\)

\(1\)

\(D(u)\)

\(\cos(u)\)

\(- \sin(u)\)

\(\cosh(u)\)

\(\sinh(u)\)

We use \(a\), \(b\), \(d\) and \(f\) for the Taylor coefficients of \(A [ X (t) ]\), \(B [ X (t) ]\), \(D [ X (t) ]\), and \(F [ X(t) ]\) respectively. It now follows from the general Taylor Coefficients Recursion Formula that for \(j = 0 , 1, \ldots\),

\begin{eqnarray} f^{(0)} & = & D ( x^{(0)} ) \\ e^{(j)} & = & d^{(j)} + \sum_{k=0}^{j} a^{(j-k)} * f^{(k)} \\ & = & d^{(j)} \\ f^{(j+1)} & = & \frac{1}{j+1} \frac{1}{ b^{(0)} } \left( \sum_{k=1}^{j+1} k x^{(k)} e^{(j+1-k)} - \sum_{k=1}^j k f^{(k)} b^{(j+1-k)} \right) \\ & = & \frac{1}{j+1} \sum_{k=1}^{j+1} k x^{(k)} d^{(j+1-k)} \end{eqnarray}

The formula above generates the order \(j+1\) coefficient of \(F[ X(t) ]\) from the lower order coefficients for \(X(t)\) and \(D[ X(t) ]\).