atomic_four_lin_ode_reverse_2

View page source

Atomic Linear ODE Second Order Reverse

x^1 Partial

We need to compute

\[\R{partial\_x} [ j * q + 1 ] = \sum_{i=0}^{m-1} \R{partial\_y} [ i * q + 1] ( \partial y_i^1 ( x^0 , x^1 ) / \partial x_j^1 )\]

where \(q = 2\) and \(j = 0 , \ldots , n-1\). Using the reverse_identity we have

\[\partial y_i^1 ( x^0 , x^1 ) / \partial x_j^1 = \partial y_i^0 ( x^0 ) / \partial x_j^0\]
\[\R{partial\_x} [ j * q + 1 ] = \sum_{i=0}^{m-1} \R{partial\_y} [ i * q + 1] ( \partial y_i^0 ( x^0 ) / \partial x_j^0 )\]

which is the same as the first order theory with

\[w_i = \R{partial\_y} [ i * q + 1]\]

x^0 Partial

We also need to compute

\[\R{partial\_x} [ j * q + 0 ] = \sum_{i=0}^{m-1} \R{partial\_y} [ i * q + 0] ( \partial y_i^0 ( x^0 ) / \partial x_j^0 ) + \R{partial\_y} [ i * q + 1] ( \partial y_i^1 ( x^0 , x^1 ) / \partial x_j^0 )\]

Note that we can solve for

\[y^1 ( x^0 , x^1 ) = z^1 ( r , x^0 , x^1 )\]

using the following extended ODE; see forward theory .

\[\begin{split}\left[ \begin{array}{c} z^0_t (t, x^0 ) \\ z^1_t (t, x^0 , x^1 ) \end{array} \right] = \left[ \begin{array}{cc} A^0 & 0 \\ A^1 & A^0 \end{array} \right] \left[ \begin{array}{c} z^0 (t, x^0 ) \\ z^1 (t, x^0 , x^1 ) \end{array} \right] \; , \; \left[ \begin{array}{c} z^0 (0, x^0 ) \\ z^1 (0, x^0 , x^1 ) \end{array} \right] = \left[ \begin{array}{c} b^0 \\ b^1 \end{array} \right]\end{split}\]

Note that \(A^0\), \(b^0\) are components of \(x^0\) and \(A^1\), \(b^1\) are components of \(x^1\). We use the following notation

\[\begin{split}\bar{x} = \left[ \begin{array}{c} x^0 \\ x^1 \end{array} \right] \W{,} \bar{z}(t , \bar{x} ) = \left[ \begin{array}{c} z^0 (t, x^0) \\ z^1 ( t, x^0 , x^1 ) \end{array} \right] \W{,} \bar{A} = \left[ \begin{array}{cc} A^0 & 0 \\ A^1 & A^0 \end{array} \right] \W{,} \bar{b} = \left[ \begin{array}{c} b^0 \\ b^1 \end{array} \right]\end{split}\]

Using this notation we have

\[\bar{z}_t ( t , \bar{x} ) = \bar{A} \bar{z} (t, \bar{x} ) \W{,} \bar{z} (0, \bar{x} ) = \bar{b}\]

Define \(\bar{w} \in \B{R}^{m + m}\) by

\[\bar{w}_i = \R{partial\_y}[ i * q + 0 ] \W{,} \bar{w}_{m + i} = \R{partial\_y}[ i * q + 1 ]\]

For this case, we can compute

\[\partial_\bar{x} \bar{w}^\R{T} \bar{z}(r, \bar{x} )\]

which is same as the first order case but with the extended variables and extended ODE. We will only use the components of \(\partial_\bar{x}\) that correspond to partials w.r.t. \(x^0\).