\(\newcommand{\W}[1]{ \; #1 \; }\) \(\newcommand{\R}[1]{ {\rm #1} }\) \(\newcommand{\B}[1]{ {\bf #1} }\) \(\newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} }\) \(\newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} }\) \(\newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} }\) \(\newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }\)
atomic_four_lin_ode_set.hpp¶
View page sourceatomic_lin_ode Set Routine: Example Implementation¶
Syntax¶
set
( r , step , pattern , transpose )Prototype¶
typedef CppAD::sparse_rc< CppAD::vector<size_t> > sparse_rc;
template <class Base>
size_t atomic_lin_ode<Base>::set(
const Base& r, const Base& step, sparse_rc& pattern, const bool& transpose
)
Purpose¶
Stores the auxiliary information for a an atomic operation that computes the solution of a linear ODE.
r¶
This argument is the final value for the variable that the ODE is with respect to.
step¶
This is a positive maximum step size to use when solving the ODE.
pattern¶
This argument is a sparsity pattern.
It would be const
except for the fact that
pattern.set_row_major () is called so that checking for
equality is faster; see
set_row_major .
transpose¶
If this argument is true (false) the sparsity pattern is for \(A(x)\R{T}\) (\(A(x)\)).
Source¶
# include <cppad/example/atomic_four/lin_ode/lin_ode.hpp>
namespace CppAD { // BEGIN_CPPAD_NAMESPACE
// BEGIN PROTOTYPE
template <class Base>
size_t atomic_lin_ode<Base>::set(
const Base& r, const Base& step, sparse_rc& pattern, const bool& transpose
)
// END PROTOTYPE
{
// pattern
// set_row_major so that checking for pattern equality is faster
pattern.set_row_major();
//
// thread
size_t thread = thread_alloc::thread_num();
//
// work_[thread]
if( work_[thread] == nullptr )
work_[thread] = new thread_struct;
//
// pattern_vec
CppAD::vector<sparse_rc>& pattern_vec( work_[thread]->pattern_vec );
//
// pattern_index
size_t n_pattern = pattern_vec.size();
size_t pattern_index = n_pattern;
for(size_t i = 0; i < n_pattern; ++i)
if( pattern == pattern_vec[i] )
pattern_index = i;
if( pattern_index == n_pattern )
{ pattern_vec.push_back( pattern );
CPPAD_ASSERT_UNKNOWN( pattern_vec[pattern_index] == pattern );
}
//
// call_vec
CppAD::vector<call_struct>& call_vec( work_[thread]->call_vec );
//
// call_id
size_t call_id = call_vec.size();
//
// call
call_struct call;
call.thread = thread;
call.r = r;
call.step = step;
call.pattern_index = pattern_index;
call.transpose = transpose;
//
// work_[thread]
call_vec.push_back( call );
//
return call_id;
}
} // END_CPPAD_NAMESPACE