\(\newcommand{\W}[1]{ \; #1 \; }\) \(\newcommand{\R}[1]{ {\rm #1} }\) \(\newcommand{\B}[1]{ {\bf #1} }\) \(\newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} }\) \(\newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} }\) \(\newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} }\) \(\newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }\)
a11c_bthread.cpp¶
View page sourceA Simple Boost Thread Example and Test¶
Purpose¶
This example just demonstrates Boost threads and does not use CppAD at all.
Source Code¶
# include <boost/thread.hpp>
# include <limits>
# include <cmath>
# include <cassert>
// for size_t
# include <cstddef>
//
# define NUMBER_THREADS 4
namespace { // Begin empty namespace
class worker_t
{
private:
int n_;
float* a_;
float* b_;
public:
void setup(size_t n, float* a, float* b)
{ n_ = static_cast<int>(n);
a_ = a;
b_ = b;
}
// Beginning of Example A.1.1.1c of OpenMP 2.5 standard document
void a1(int n, float *a, float *b)
{ int i;
for(i = 1; i < n; i++)
b[i] = (a[i] + a[i-1]) / 2.0f;
return;
}
// End of Example A.1.1.1c of OpenMP 2.5 standard document
void operator()()
{ a1(n_, a_, b_); }
};
}
bool a11c(void)
{ bool ok = true;
// Test setup
size_t i, j, n_total = 10;
float *a = new float[n_total];
float *b = new float[n_total];
for(i = 0; i < n_total; i++)
a[i] = float(i);
// number of threads
size_t number_threads = NUMBER_THREADS;
// set of workers
worker_t worker[NUMBER_THREADS];
// threads for each worker
boost::thread* bthread[NUMBER_THREADS];
// Break the work up into sub work for each thread
size_t n = n_total / number_threads;
size_t n_tmp = n;
float* a_tmp = a;
float* b_tmp = b;
worker[0].setup(n_tmp, a_tmp, b_tmp);
for(j = 1; j < number_threads; j++)
{ n_tmp = n + 1;
a_tmp = a_tmp + n - 1;
b_tmp = b_tmp + n - 1;
if( j == (number_threads - 1) )
n_tmp = n_total - j * n + 1;
worker[j].setup(n_tmp, a_tmp, b_tmp);
// create this thread
bthread[j] = new boost::thread(worker[j]);
}
// do this threads protion of the work
worker[0]();
// wait for other threads to finish
for(j = 1; j < number_threads; j++)
{ bthread[j]->join();
delete bthread[j];
}
// check the result
float eps = 100.f * std::numeric_limits<float>::epsilon();
for(i = 1; i < n ; i++)
ok &= std::fabs( (2. * b[i] - a[i] - a[i-1]) / b[i] ) <= eps;
delete [] a;
delete [] b;
return ok;
}