\(\newcommand{\W}[1]{ \; #1 \; }\) \(\newcommand{\R}[1]{ {\rm #1} }\) \(\newcommand{\B}[1]{ {\bf #1} }\) \(\newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} }\) \(\newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} }\) \(\newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} }\) \(\newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }\)
adolc_poly.cpp¶
View page sourceAdolc Speed: Second Derivative of a Polynomial¶
Specifications¶
See link_poly .
Implementation¶
// suppress conversion warnings before other includes
# include <cppad/wno_conversion.hpp>
//
# include <vector>
# include <adolc/adolc.h>
# include <cppad/speed/uniform_01.hpp>
# include <cppad/utility/poly.hpp>
# include <cppad/utility/vector.hpp>
# include <cppad/utility/thread_alloc.hpp>
# include "adolc_alloc_mat.hpp"
// list of possible options
# include <map>
extern std::map<std::string, bool> global_option;
bool link_poly(
size_t size ,
size_t repeat ,
CppAD::vector<double> &a , // coefficients of polynomial
CppAD::vector<double> &z , // polynomial argument value
CppAD::vector<double> &ddp ) // second derivative w.r.t z
{
if( global_option["atomic"] )
return false;
if( global_option["memory"] || global_option["optimize"] )
return false;
// -----------------------------------------------------
// setup
size_t i;
short tag = 0; // tape identifier
int keep = 0; // do not keep forward mode results in buffer
int m = 1; // number of dependent variables
int n = 1; // number of independent variables
int d = 2; // highest derivative degree
double f; // function value
// set up for thread_alloc memory allocator (fast and checks for leaks)
using CppAD::thread_alloc; // the allocator
size_t capacity; // capacity of an allocation
// choose a vector of polynomial coefficients
CppAD::uniform_01(size, a);
// AD copy of the polynomial coefficients
std::vector<adouble> A(size);
for(i = 0; i < size; i++)
A[i] = a[i];
// domain and range space AD values
adouble Z, P;
// allocate arguments to hos_forward
double* x0 = thread_alloc::create_array<double>(size_t(n), capacity);
double* y0 = thread_alloc::create_array<double>(size_t(m), capacity);
double** x = adolc_alloc_mat(size_t(n), size_t(d));
double** y = adolc_alloc_mat(size_t(m), size_t(d));
// Taylor coefficient for argument
x[0][0] = 1.; // first order
x[0][1] = 0.; // second order
// ----------------------------------------------------------------------
if( ! global_option["onetape"] ) while(repeat--)
{ // choose an argument value
CppAD::uniform_01(1, z);
// declare independent variables
trace_on(tag, keep);
Z <<= z[0];
// AD computation of the function value
P = CppAD::Poly(0, A, Z);
// create function object f : Z -> P
P >>= f;
trace_off();
// set the argument value
x0[0] = z[0];
// evaluate the polynomial at the new argument value
hos_forward(tag, m, n, d, keep, x0, x, y0, y);
// second derivative is twice second order Taylor coef
ddp[0] = 2. * y[0][1];
}
else
{
// choose an argument value
CppAD::uniform_01(1, z);
// declare independent variables
trace_on(tag, keep);
Z <<= z[0];
// AD computation of the function value
P = CppAD::Poly(0, A, Z);
// create function object f : Z -> P
P >>= f;
trace_off();
while(repeat--)
{ // get the next argument value
CppAD::uniform_01(1, z);
x0[0] = z[0];
// evaluate the polynomial at the new argument value
hos_forward(tag, m, n, d, keep, x0, x, y0, y);
// second derivative is twice second order Taylor coef
ddp[0] = 2. * y[0][1];
}
}
// ------------------------------------------------------
// tear down
adolc_free_mat(x);
adolc_free_mat(y);
thread_alloc::delete_array(x0);
thread_alloc::delete_array(y0);
return true;
}