base2ad.cpp

View page source

Taylor’s Ode Solver: base2ad Example and Test

See Also

taylor_ode.cpp , mul_level_ode.cpp

Purpose

This is a realistic example using base2ad to create an AD < Base > function from an Base function. The function represents an ordinary differential equation. It is differentiated with respect to its variables . These derivatives are used by the taylor_ode method. This solution is then differentiated with respect to the functions dynamic parameters .

ODE

For this example the function \(y : \B{R} \times \B{R}^n \rightarrow \B{R}^n\) is defined by \(y(0, x) = 0\) and \(\partial_t y(t, x) = g(y, x)\) where \(g : \B{R}^n \times \B{R}^n \rightarrow \B{R}^n\) is defined by

\[\begin{split}g(y, x) = \left( \begin{array}{c} x_0 \\ x_1 y_0 \\ \vdots \\ x_{n-1} y_{n-2} \end{array} \right)\end{split}\]

ODE Solution

The solution for this example can be calculated by starting with the first row and then using the solution for the first row to solve the second and so on. Doing this we obtain

\[\begin{split}y(t, x ) = \left( \begin{array}{c} x_0 t \\ x_1 x_0 t^2 / 2 \\ \vdots \\ x_{n-1} x_{n-2} \ldots x_0 t^n / n ! \end{array} \right)\end{split}\]

Derivative of ODE Solution

Differentiating the solution above, with respect to the parameter vector \(x\), we notice that

\[\begin{split}\partial_x y(t, x ) = \left( \begin{array}{cccc} y_0 (t,x) / x_0 & 0 & \cdots & 0 \\ y_1 (t,x) / x_0 & y_1 (t,x) / x_1 & 0 & \vdots \\ \vdots & \vdots & \ddots & 0 \\ y_{n-1} (t,x) / x_0 & y_{n-1} (t,x) / x_1 & \cdots & y_{n-1} (t,x) / x_{n-1} \end{array} \right)\end{split}\]

Taylor’s Method Using AD

We define the function \(z(t, x)\) by the equation

\[z ( t , x ) = g[ y ( t , x ), x ]\]

see taylor_ode for the method used to compute the Taylor coefficients w.r.t \(t\) of \(y(t, x)\).

Source

# include <cppad/cppad.hpp>

// =========================================================================
namespace { // BEGIN empty namespace

typedef CppAD::AD<double>                  a_double;

typedef CPPAD_TESTVECTOR(double)           d_vector;
typedef CPPAD_TESTVECTOR(a_double)         a_vector;

typedef CppAD::ADFun<double>               fun_double;
typedef CppAD::ADFun<a_double, double>     afun_double;

// -------------------------------------------------------------------------
// class definition for C++ function object that defines ODE
class Ode {
private:
   // copy of x that is set by constructor and used by g(y)
   a_vector x_;
public:
   // constructor
   Ode(const a_vector& x) : x_(x)
   { }
   // the function g(y) given the parameter vector x
   a_vector operator() (const a_vector& y) const
   {  size_t n = y.size();
      a_vector g(n);
      g[0] = x_[0];
      for(size_t i = 1; i < n; i++)
         g[i] = x_[i] * y[i-1];
      //
      return g;
   }
};

// -------------------------------------------------------------------------
// Routine that uses Taylor's method to solve ordinary differential equaitons
a_vector taylor_ode(
   afun_double&     fun_g   ,  // function that defines the ODE
   size_t           order   ,  // order of Taylor's method used
   size_t           nstep   ,  // number of steps to take
   const a_double&  dt      ,  // Delta t for each step
   const a_vector&  y_ini)     // y(t) at the initial time
{
   // number of variables in the ODE
   size_t n = y_ini.size();

   // initialize y
   a_vector y = y_ini;

   // loop with respect to each step of Taylors method
   for(size_t s = 0; s < nstep; s++)
   {
      // initialize
      a_vector y_k   = y;
      a_double dt_k  = a_double(1.0);
      a_vector next  = y;

      for(size_t k = 0; k < order; k++)
      {
         // evaluate k-th order Taylor coefficient z^{(k)} (t)
         a_vector z_k = fun_g.Forward(k, y_k);

         // dt^{k+1}
         dt_k *= dt;

         // y^{(k+1)}
         for(size_t i = 0; i < n; i++)
         {  // y^{(k+1)}
            y_k[i] = z_k[i] / a_double(k + 1);

            // add term for k+1 Taylor coefficient
            // to solution for next y
            next[i] += y_k[i] * dt_k;
         }
      }

      // take step
      y = next;
   }
   return y;
}
} // END empty namespace

// ==========================================================================
// Routine that tests alogirhtmic differentiation of solutions computed
// by the routine taylor_ode.
bool base2ad(void)
{  bool ok = true;
   double eps = 100. * std::numeric_limits<double>::epsilon();

   // number of components in differential equation
   size_t n = 4;

   // record function g(y, x)
   // with y as the independent variables and x as dynamic parameters
   a_vector  ay(n), ax(n);
   for(size_t i = 0; i < n; i++)
      ay[i] = ax[i] = double(i + 1);
   CppAD::Independent(ay, ax);

   // fun_g
   Ode G(ax);
   a_vector ag = G(ay);
   fun_double fun_g(ay, ag);


   // afun_g
   afun_double afun_g( fun_g.base2ad() ); // differential equation

   // other arguments to taylor_ode
   size_t   order = n;       // order of Taylor's method used
   size_t   nstep = 2;       // number of steps to take
   a_double adt   = 1.;      // Delta t for each step
   a_vector ay_ini(n);       // initial value of y
   for(size_t i = 0; i < n; i++)
      ay_ini[i] = 0.;

   // declare x as independent variables
   CppAD::Independent(ax);

   // the independent variables if this function are
   // the dynamic parameters in afun_g
   afun_g.new_dynamic(ax);

   // integrate the differential equation
   a_vector ay_final;
   ay_final = taylor_ode(afun_g, order, nstep, adt, ay_ini);

   // define differentiable function object f(x) = y_final(x)
   // that computes its derivatives in double
   CppAD::ADFun<double> fun_f(ax, ay_final);

   // double version of ax
   d_vector x(n);
   for(size_t i = 0; i < n; i++)
      x[i] = Value( ax[i] );

   // check function values
   double check = 1.;
   double t     = double(nstep) * Value(adt);
   for(size_t i = 0; i < n; i++)
   {  check *= x[i] * t / double(i + 1);
      ok &= CppAD::NearEqual(Value(ay_final[i]), check, eps, eps);
   }

   // There appears to be a bug in g++ version 4.4.2 because it generates
   // a warning for the equivalent form
   // d_vector jac = fun_f.Jacobian(x);
   d_vector jac ( fun_f.Jacobian(x) );

   // check Jacobian
   for(size_t i = 0; i < n; i++)
   {  for(size_t j = 0; j < n; j++)
      {  double jac_ij = jac[i * n + j];
         if( i < j )
            check = 0.;
         else
            check = Value( ay_final[i] ) / x[j];
         ok &= CppAD::NearEqual(jac_ij, check, eps, eps);
      }
   }
   return ok;
}