\(\newcommand{\W}[1]{ \; #1 \; }\) \(\newcommand{\R}[1]{ {\rm #1} }\) \(\newcommand{\B}[1]{ {\bf #1} }\) \(\newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} }\) \(\newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} }\) \(\newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} }\) \(\newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }\)
azmul¶
View page sourceAbsolute Zero Multiplication¶
Syntax¶
azmul
( x , y )Purpose¶
Evaluates multiplication with an absolute zero for any of the possible types listed below. The result is given by
Note if x is zero and y is infinity, ieee multiplication would result in not a number whereas z would be zero.
Base¶
If Base satisfies the base type requirements and arguments x , y have prototypes
const
Base & xconst
Base & ythen the result z has prototype
Base z
AD<Base>¶
If the arguments x , y have prototype
const AD
< Base >& xconst AD
< Base >& ythen the result z has prototype
AD
< Base > z
VecAD<Base>¶
If the arguments x , y have prototype
const VecAD
< Base >:: reference&
xconst VecAD
< Base >:: reference&
ythen the result z has prototype
AD
< Base > z
Example¶
The file azmul.cpp is an examples and tests of this function.