sqrt_forward

View page source

Square Root Function Forward Mode Theory

If \(F(x) = \sqrt{x}\)

\[F(x) * F^{(1)} (x) - 0 * F (x) = 1/2\]

and in the standard math function differential equation , \(A(x) = 0\), \(B(x) = F(x)\), and \(D(x) = 1/2\). We use \(a\), \(b\), \(d\), and \(z\) to denote the Taylor coefficients for \(A [ X (t) ]\), \(B [ X (t) ]\), \(D [ X (t) ]\), and \(F [ X(t) ]\) respectively. It now follows from the general Taylor Coefficients Recursion Formula that for \(j = 0 , 1, \ldots\),

\begin{eqnarray} z^{(0)} & = & \sqrt { x^{(0)} } \\ e^{(j)} & = & d^{(j)} + \sum_{k=0}^{j} a^{(j-k)} * z^{(k)} \\ & = & \left\{ \begin{array}{ll} 1/2 & {\rm if} \; j = 0 \\ 0 & {\rm otherwise} \end{array} \right. \\ z^{(j+1)} & = & \frac{1}{j+1} \frac{1}{ b^{(0)} } \left( \sum_{k=1}^{j+1} k x^{(k)} e^{(j+1-k)} - \sum_{k=1}^j k z^{(k)} b^{(j+1-k)} \right) \\ & = & \frac{1}{j+1} \frac{1}{ z^{(0)} } \left( \frac{j+1}{2} x^{(j+1) } - \sum_{k=1}^j k z^{(k)} z^{(j+1-k)} \right) \end{eqnarray}