------------------------------------------------- lines 6-122 of file: xrst/theory/tan_reverse.xrst ------------------------------------------------- {xrst_begin tan_reverse} Tangent and Hyperbolic Tangent Reverse Mode Theory ################################################## Notation ******** We use the reverse theory :ref:`standard math function` definition for the functions :math:`H` and :math:`G`. In addition, we use the forward mode notation in :ref:`tan_forward-name` for :math:`X(t)`, :math:`Y(t)` and :math:`Z(t)`. Eliminating Y(t) **************** For :math:`j > 0`, the forward mode coefficients are given by .. math:: y^{(j-1)} = \sum_{k=0}^{j-1} z^{(k)} z^{(j-k-1)} Fix :math:`j > 0` and suppose that :math:`H` is the same as :math:`G` except that :math:`y^{(j-1)}` is replaced as a function of the Taylor coefficients for :math:`Z(t)`. To be specific, for :math:`k = 0 , \ldots , j-1`, .. math:: :nowrap: \begin{eqnarray} \D{H}{ z^{(k)} } & = & \D{G}{ z^{(k)} } + \D{G}{ y^{(j-1)} } \D{ y^{(j-1)} }{ z^{(k)} } \\ & = & \D{G}{ z^{(k)} } + \D{G}{ y^{(j-1)} } 2 z^{(j-k-1)} \end{eqnarray} Positive Orders Z(t) ******************** For order :math:`j > 0`, suppose that :math:`H` is the same as :math:`G` except that :math:`z^{(j)}` is expressed as a function of the coefficients for :math:`X(t)`, and the lower order Taylor coefficients for :math:`Y(t)`, :math:`Z(t)`. .. math:: z^{(j)} = x^{(j)} \pm \frac{1}{j} \sum_{k=1}^j k x^{(k)} y^{(j-k)} For :math:`k = 1 , \ldots , j`, the partial of :math:`H` with respect to :math:`x^{(k)}` is given by .. math:: :nowrap: \begin{eqnarray} \D{H}{ x^{(k)} } & = & \D{G}{ x^{(k)} } + \D{G}{ z^{(j)} } \D{ z^{(j)} }{ x^{(k)} } \\ & = & \D{G}{ x^{(k)} } + \D{G}{ z^{(j)} } \left[ \delta ( j - k ) \pm \frac{k}{j} y^{(j-k)} \right] \end{eqnarray} where :math:`\delta ( j - k )` is one if :math:`j = k` and zero otherwise. For :math:`k = 1 , \ldots , j` The partial of :math:`H` with respect to :math:`y^{j-k}`, is given by .. math:: :nowrap: \begin{eqnarray} \D{H}{ y^{(j-k)} } & = & \D{G}{ y^{(j-k)} } + \D{G}{ z^{(j)} } \D{ z^{(j)} }{ y^{(j-k)} } \\ & = & \D{G}{ y^{(j-k)} } \pm \D{G}{ z^{(j)} }\frac{k}{j} x^{k} \end{eqnarray} Order Zero Z(t) *************** The order zero coefficients for the tangent and hyperbolic tangent are .. math:: :nowrap: \begin{eqnarray} z^{(0)} & = & \left\{ \begin{array}{c} \tan ( x^{(0)} ) \\ \tanh ( x^{(0)} ) \end{array} \right. \end{eqnarray} Suppose that :math:`H` is the same as :math:`G` except that :math:`z^{(0)}` is expressed as a function of the Taylor coefficients for :math:`X(t)`. In this case, .. math:: :nowrap: \begin{eqnarray} \D{H}{ x^{(0)} } & = & \D{G}{ x^{(0)} } + \D{G}{ z^{(0)} } \D{ z^{(0)} }{ x^{(0)} } \\ & = & \D{G}{ x^{(0)} } + \D{G}{ z^{(0)} } ( 1 \pm y^{(0)} ) \end{eqnarray} {xrst_end tan_reverse}