--------------------------------------------------------- lines 6-72 of file: example/abs_normal/simplex_method.cpp --------------------------------------------------------- {xrst_begin simplex_method.cpp} {xrst_spell rlr } abs_normal simplex_method: Example and Test ########################################### Problem ******* Our original problem is .. math:: \R{minimize} \; | u - 1| \; \R{w.r.t} \; u \in \B{R} We reformulate this as the following problem .. math:: \begin{array}{rlr} \R{minimize} & v & \R{w.r.t} \; (u,v) \in \B{R}^2 \\ \R{subject \; to} & u - 1 \leq v \\ & 1 - u \leq v \end{array} We know that the value of :math:`v` at the solution is greater than or equal zero. Hence we can reformulate this problem as .. math:: \begin{array}{rlr} \R{minimize} & v & \R{w.r.t} \; ( u_- , u_+ , v) \in \B{R}_+^3 \\ \R{subject \; to} & u_+ - u_- - 1 \leq v \\ & 1 - u_+ + u_- \leq v \end{array} This is equivalent to .. math:: \begin{array}{rlr} \R{minimize} & (0, 0, 1) \cdot ( u_+, u_- , v)^T & \R{w.r.t} \; (u,v) \in \B{R}_+^3 \\ \R{subject \; to} & \left( \begin{array}{ccc} +1 & -1 & -1 \\ -1 & +1 & +1 \end{array} \right) \left( \begin{array}{c} u_+ \\ u_- \\ v \end{array} \right) + \left( \begin{array}{c} -1 \\ 1 \end{array} \right) \leq 0 \end{array} which is in the form expected by :ref:`simplex_method-name` . Source ****** {xrst_literal // BEGIN C++ // END C++ } {xrst_end simplex_method.cpp}