------------------------------------------------ lines 6-72 of file: xrst/theory/exp_forward.xrst ------------------------------------------------ {xrst_begin exp_forward} {xrst_spell expm } Exponential Function Forward Mode Theory ######################################## Derivatives *********** If :math:`F(x)` is :math:`\R{exp} (x)` or :math:`\R{expm1} (x)` the corresponding derivative satisfies the equation .. math:: 1 * F^{(1)} (x) - 1 * F (x) = d^{(0)} = \left\{ \begin{array}{ll} 0 & \R{if} \; F(x) = \R{exp}(x) \\ 1 & \R{if} \; F(x) = \R{expm1}(x) \end{array} \right. where the equation above defines :math:`d^{(0)}`. In the :ref:`standard math function differential equation` , :math:`A(x) = 1`, :math:`B(x) = 1`, and :math:`D(x) = d^{(0)}`. We use :math:`a`, :math:`b`, :math:`d`, and :math:`z` to denote the Taylor coefficients for :math:`A [ X (t) ]`, :math:`B [ X (t) ]`, :math:`D [ X (t) ]`, and :math:`F [ X(t) ]` respectively. Taylor Coefficients Recursion ***************************** For orders :math:`j = 0 , 1, \ldots`, .. math:: :nowrap: \begin{eqnarray} z^{(0)} & = & F ( x^{(0)} ) \\ e^{(0)} & = & d^{(0)} + z^{(0)} \\ e^{(j+1)} & = & d^{(j+1)} + \sum_{k=0}^{j+1} a^{(j+1-k)} * z^{(k)} \\ & = & z^{(j+1)} \\ z^{(j+1)} & = & \frac{1}{j+1} \frac{1}{ b^{(0)} } \left( \sum_{k=1}^{j+1} k x^{(k)} e^{(j+1-k)} - \sum_{k=1}^j k z^{(k)} b^{(j+1-k)} \right) \\ & = & x^{(j+1)} d^{(0)} + \frac{1}{j+1} \sum_{k=1}^{j+1} k x^{(k)} z^{(j+1-k)} \end{eqnarray} {xrst_end exp_forward}