----------------------------------------------------------------
lines 8-301 of file: include/cppad/core/atomic/three/reverse.hpp
----------------------------------------------------------------
{xrst_begin atomic_three_reverse}
{xrst_spell
aparameter
apartial
ataylor
}
Atomic Function Reverse Mode
############################
Base
****
This syntax is used by *f* . ``Reverse`` where *f* has prototype
``ADFun`` < *Base* > *f*
and *afun* is used in *f* ;
see :ref:`atomic_three_afun@Base` .
Syntax
======
| *ok* = *afun* . ``reverse`` (
| |tab| *parameter_x* , *type_x* ,
| |tab| *order_up* , *taylor_x* , *taylor_y* , *partial_x* , *partial_y*
| )
Prototype
=========
{xrst_literal
// BEGIN_PROTOTYPE_BASE
// END_PROTOTYPE_BASE
}
AD
********
This syntax is used by *af* . ``Reverse`` where *af* has prototype
``ADFun< AD<`` *Base* > , *Base* > *af*
and *afun* is used in *af* (see :ref:`base2ad-name` ).
Syntax
======
| *ok* = *afun* . ``reverse`` (
| |tab| *aparameter_x* , *type_x* ,
| |tab| *order_up* , *ataylor_x* , *ataylor_y* , *apartial_x* , *apartial_y*
| )
Prototype
=========
{xrst_literal
// BEGIN_PROTOTYPE_AD_BASE
// END_PROTOTYPE_AD_BASE
}
Implementation
**************
This function must be defined if
:ref:`atomic_three_ctor@atomic_user@afun` is
used to define an :ref:`ADFun-name` object *f* ,
and reverse mode derivatives are computed for *f* .
It can return *ok* == ``false``
(and not compute anything) for values
of *order_up* that are greater than those used by your
:ref:`Reverse-name` mode calculations.
parameter_x
***********
See :ref:`atomic_three_define@parameter_x` .
aparameter_x
************
The specifications for *aparameter_x*
is the same as for :ref:`atomic_three_define@parameter_x`
(only the type of *ataylor_x* is different).
type_x
******
See :ref:`atomic_three_define@type_x` .
order_up
********
This argument specifies the highest order Taylor coefficient that
computing the derivative of.
taylor_x
********
The size of *taylor_x* is ( *q* +1)* *n* .
For :math:`j = 0 , \ldots , n-1` and :math:`k = 0 , \ldots , q`,
we use the Taylor coefficient notation
.. math::
:nowrap:
\begin{eqnarray}
x_j^k & = & \R{taylor\_x} [ j * ( q + 1 ) + k ]
\\
X_j (t) & = & x_j^0 + x_j^1 t^1 + \cdots + x_j^q t^q
\end{eqnarray}
Note that superscripts represent an index for :math:`x_j^k`
and an exponent for :math:`t^k`.
Also note that the Taylor coefficients for :math:`X(t)` correspond
to the derivatives of :math:`X(t)` at :math:`t = 0` in the following way:
.. math::
x_j^k = \frac{1}{ k ! } X_j^{(k)} (0)
parameters
==========
If the *j*-th component of *x* corresponds to a parameter,
*type_x* [ *j* ] < ``CppAD::variable_enum``
In this case,
the *j*-th component of *parameter_x* is equal to :math:`x_j^0`;
i.e.,
*parameter_x* [ *j* ] == *taylor_x* [ *j* * ( *q* + 1 ) + 0 ]
Furthermore, for *k* > 0 ,
*taylor_x* [ *j* * ( *q* + 1 ) + *k* ] == 0
ataylor_x
*********
The specifications for *ataylor_x* is the same as for *taylor_x*
(only the type of *ataylor_x* is different).
taylor_y
********
The size of *taylor_y* is ( *q* +1)* *m* .
For :math:`i = 0 , \ldots , m-1` and :math:`k = 0 , \ldots , q`,
we use the Taylor coefficient notation
.. math::
:nowrap:
\begin{eqnarray}
Y_i (t) & = & g_i [ X(t) ]
\\
Y_i (t) & = & y_i^0 + y_i^1 t^1 + \cdots + y_i^q t^q + o ( t^q )
\\
y_i^k & = & \R{taylor\_y} [ i * ( q + 1 ) + k ]
\end{eqnarray}
where :math:`o( t^q ) / t^q \rightarrow 0` as :math:`t \rightarrow 0`.
Note that superscripts represent an index for :math:`y_j^k`
and an exponent for :math:`t^k`.
Also note that the Taylor coefficients for :math:`Y(t)` correspond
to the derivatives of :math:`Y(t)` at :math:`t = 0` in the following way:
.. math::
y_j^k = \frac{1}{ k ! } Y_j^{(k)} (0)
ataylor_y
*********
The specifications for *ataylor_y* is the same as for *taylor_y*
(only the type of *ataylor_y* is different).
F
*
We use the notation :math:`\{ x_j^k \} \in \B{R}^{n \times (q+1)}` for
.. math::
\{ x_j^k \W{:} j = 0 , \ldots , n-1, k = 0 , \ldots , q \}
We use the notation :math:`\{ y_i^k \} \in \B{R}^{m \times (q+1)}` for
.. math::
\{ y_i^k \W{:} i = 0 , \ldots , m-1, k = 0 , \ldots , q \}
We define the function
:math:`F : \B{R}^{n \times (q+1)} \rightarrow \B{R}^{m \times (q+1)}` by
.. math::
y_i^k = F_i^k [ \{ x_j^k \} ]
Note that
.. math::
F_i^0 ( \{ x_j^k \} ) = g_i ( X(0) ) = g_i ( x^0 )
We also note that
:math:`F_i^\ell ( \{ x_j^k \} )` is a function of
:math:`x^0 , \ldots , x^\ell`
and is determined by the derivatives of :math:`g_i (x)`
up to order :math:`\ell`.
G, H
****
We use :math:`G : \B{R}^{m \times (q+1)} \rightarrow \B{R}`
to denote an arbitrary scalar valued function of :math:`\{ y_i^k \}`.
We use :math:`H : \B{R}^{n \times (q+1)} \rightarrow \B{R}`
defined by
.. math::
H ( \{ x_j^k \} ) = G[ F( \{ x_j^k \} ) ]
partial_y
*********
The size of *partial_y* is ( *q* +1)* *m* .
For :math:`i = 0 , \ldots , m-1`, :math:`k = 0 , \ldots , q`,
.. math::
\R{partial\_y} [ i * (q + 1 ) + k ] = \partial G / \partial y_i^k
apartial_y
**********
The specifications for *apartial_y* is the same as for
*partial_y* (only the type of *apartial_y* is different).
partial_x
*********
The size of *partial_x* is ( *q* +1)* *n* .
The input values of the elements of *partial_x*
are not specified (must not matter).
Upon return,
for :math:`j = 0 , \ldots , n-1` and :math:`\ell = 0 , \ldots , q`,
.. math::
:nowrap:
\begin{eqnarray}
\R{partial\_x} [ j * (q + 1) + \ell ] & = & \partial H / \partial x_j^\ell
\\
& = &
( \partial G / \partial \{ y_i^k \} ) \cdot
( \partial \{ y_i^k \} / \partial x_j^\ell )
\\
& = &
\sum_{k=0}^q
\sum_{i=0}^{m-1}
( \partial G / \partial y_i^k ) ( \partial y_i^k / \partial x_j^\ell )
\\
& = &
\sum_{k=\ell}^q
\sum_{i=0}^{m-1}
\R{partial\_y}[ i * (q + 1 ) + k ] ( \partial F_i^k / \partial x_j^\ell )
\end{eqnarray}
Note that we have used the fact that for :math:`k < \ell`,
:math:`\partial F_i^k / \partial x_j^\ell = 0`.
Short Circuit Operations
========================
For the :ref:`atomic_three_reverse@Base` prototype, if
``IdenticalZero`` ( *partial_y* [ *i* * ( *q* +1)+ *k* ]) is true,
one does not need to compute :math:`( \partial F_i^k / \partial x_j^\ell )`;
see :ref:`base_identical-name` .
This can be used,
in a similar way to :ref:`atomic_three_forward@need_y` ,
to avoid unnecessary operations.
azmul
=====
An :ref:`optimized` function will use zero
for values in *taylor_x* and *taylor_y* that are
not necessary in the current context.
If you divide by these values when computing
:math:`( \partial F_i^k / \partial x_j^\ell )` you could get an nan
if the corresponding value in *partial_y* is zero.
To be careful, if you do divide by
*taylor_x* or *taylor_y* , use :ref:`azmul-name`
for to avoid zero over zero calculations.
apartial_x
**********
The specifications for *apartial_x* is the same as for
*partial_x* (only the type of *apartial_x* is different).
ok
**
If this calculation succeeded, *ok* is true.
Otherwise it is false.
{xrst_toc_hidden
example/atomic_three/reverse.cpp
}
Examples
********
The file :ref:`atomic_three_reverse.cpp-name` contains an example and test
that uses this routine.
{xrst_end atomic_three_reverse}