--------------------------------------------------------------- lines 8-262 of file: include/cppad/core/atomic/four/forward.hpp --------------------------------------------------------------- {xrst_begin atomic_four_forward} {xrst_spell ataylor } Atomic Function Forward Mode ############################ Syntax ****** Base ==== | *ok* = *afun* . ``forward`` ( | |tab| *call_id* , *select_y* , | |tab| *order_low* , *order_up* , *type_x* , *taylor_x* , *taylor_y* | ) AD ======== | *ok* = *afun* . ``forward`` ( | |tab| *call_id* , *select_y* , | |tab| *order_low* , *order_up* , *type_x* , *ataylor_x* , *ataylor_y* | ) Prototype ********* Base ==== {xrst_literal // BEGIN_PROTOTYPE_BASE // END_PROTOTYPE_BASE } AD ======== {xrst_literal // BEGIN_PROTOTYPE_AD_BASE // END_PROTOTYPE_AD_BASE } Base **** see :ref:`atomic_four_call@Base` . vector ****** is the :ref:`CppAD_vector-name` template class. Usage ***** Base ==== The *Base* syntax and prototype are used by a :ref:`call` to the atomic function *afun* . They are also used by *f* . ``Forward`` and *f* . ``new_dynamic`` where *f* has prototype ``ADFun`` < *Base* > *f* and *afun* is used during the recording of *f* . AD ======== The ``AD`` < *Base* > syntax and prototype are used by *af* . ``Forward`` and *af* . ``new_dynamic`` where *af* has prototype ``ADFun< AD<`` *Base* > , *Base* > *af* and *afun* is used in a function *af* , created from *f* using :ref:`base2ad-name` . Implementation ************** The *taylor_x* , *taylor_y* version of this function must be defined by the :ref:`atomic_four_ctor@atomic_user` class. It can return *ok* == ``false`` (and not compute anything) for values of *order_up* that are greater than those used by your :ref:`Forward-name` mode calculations. Order zero must be implemented. call_id ******* See :ref:`atomic_four_call@call_id` . select_y ******** This argument has size equal to the number of results to this atomic function; i.e. the size of :ref:`atomic_four_call@ay` . It specifies which components of *y* the corresponding Taylor coefficients must be computed. order_low ********* This argument specifies the lowest order Taylor coefficient that we are computing. p = We sometimes use the notation *p* = *order_low* below. order_up ******** This argument is the highest order Taylor coefficient that we are computing ( *order_low* <= *order_up* ). q = We use the notation *q* = *order_up* + 1 below. This is the number of Taylor coefficients for each component of *x* and *y* . taylor_x ******** The size of *taylor_x* is *q* * *n* . For :math:`j = 0 , \ldots , n-1` and :math:`k = 0 , \ldots , q-1`, we use the Taylor coefficient notation .. math:: :nowrap: \begin{eqnarray} x_j^k & = & \R{taylor\_x} [ j * q + k ] \\ X_j (t) & = & x_j^0 + x_j^1 t^1 + \cdots + x_j^{q-1} t^{q-1} \end{eqnarray} Note that superscripts represent an index for :math:`x_j^k` and an exponent for :math:`t^k`. Also note that the Taylor coefficients for :math:`X(t)` correspond to the derivatives of :math:`X(t)` at :math:`t = 0` in the following way: .. math:: x_j^k = \frac{1}{ k ! } X_j^{(k)} (0) parameters ========== If the *j*-th component of *x* is a parameter, *type_x* [ *j* ] < ``CppAD::variable_enum`` In this case, for *k* > 0 , *taylor_x* [ *j* * *q* + *k* ] == 0 ataylor_x ********* The specifications for *ataylor_x* is the same as for *taylor_x* (only the type of *ataylor_x* is different). taylor_y ******** The size of *taylor_y* is *q* * *m* . Upon return, For :math:`i = 0 , \ldots , m-1` and :math:`k = 0 , \ldots , q-1`, if *select_y* [ *i* ] is true, .. math:: :nowrap: \begin{eqnarray} Y_i (t) & = & g_i [ X(t) ] \\ Y_i (t) & = & y_i^0 + y_i^1 t^1 + \cdots + y_i^{q-1} t^{q-1} + o( t^{q-1} ) \\ \R{taylor\_y} [ i * q + k ] & = & y_i^k \end{eqnarray} where :math:`o( t^{q-1} ) / t^{q-1} \rightarrow 0` as :math:`t \rightarrow 0`. Note that superscripts represent an index for :math:`y_j^k` and an exponent for :math:`t^k`. Also note that the Taylor coefficients for :math:`Y(t)` correspond to the derivatives of :math:`Y(t)` at :math:`t = 0` in the following way: .. math:: y_j^k = \frac{1}{ k ! } Y_j^{(k)} (0) If :math:`p > 0`, for :math:`i = 0 , \ldots , m-1` and :math:`k = 0 , \ldots , p-1`, the input of *taylor_y* satisfies .. math:: \R{taylor\_y} [ i * q + k ] = y_i^k These values do not need to be recalculated and can be used during the computation of the higher order coefficients. ataylor_y ********* The specifications for *ataylor_y* is the same as for *taylor_y* (only the type of *ataylor_y* is different). ok ** If this calculation succeeded, *ok* is true. Otherwise, it is false. Discussion ********** For example, suppose that *order_up* == 2 , and you know how to compute the function :math:`g(x)`, its first derivative :math:`g^{(1)} (x)`, and it component wise Hessian :math:`g_i^{(2)} (x)`. Then you can compute *taylor_x* using the following formulas: .. math:: :nowrap: \begin{eqnarray} y_i^0 & = & Y(0) = g_i ( x^0 ) \\ y_i^1 & = & Y^{(1)} ( 0 ) = g_i^{(1)} ( x^0 ) X^{(1)} ( 0 ) = g_i^{(1)} ( x^0 ) x^1 \\ y_i^2 & = & \frac{1}{2 !} Y^{(2)} (0) \\ & = & \frac{1}{2} X^{(1)} (0)^\R{T} g_i^{(2)} ( x^0 ) X^{(1)} ( 0 ) + \frac{1}{2} g_i^{(1)} ( x^0 ) X^{(2)} ( 0 ) \\ & = & \frac{1}{2} (x^1)^\R{T} g_i^{(2)} ( x^0 ) x^1 + g_i^{(1)} ( x^0 ) x^2 \end{eqnarray} For :math:`i = 0 , \ldots , m-1`, and :math:`k = 0 , 1 , 2`, .. math:: \R{taylor\_y} [ i * q + k ] = y_i^k Example ******* The following is an example ``forward`` definition taken from :ref:`atomic_four_norm_sq.cpp-name` : {xrst_literal example/atomic_four/norm_sq.cpp // BEGIN FORWARD // END FORWARD } {xrst_end atomic_four_forward}