-------------------------------------------------- lines 6-110 of file: xrst/theory/asin_forward.xrst -------------------------------------------------- {xrst_begin asin_forward} {xrst_spell asinh } Inverse Sine and Hyperbolic Sine Forward Mode Theory #################################################### Derivatives *********** .. math:: :nowrap: \begin{eqnarray} \R{asin}^{(1)} (x) & = & 1 / \sqrt{ 1 - x * x } \\ \R{asinh}^{(1)} (x) & = & 1 / \sqrt{ 1 + x * x } \end{eqnarray} If :math:`F(x)` is :math:`\R{asin} (x)` or :math:`\R{asinh} (x)` the corresponding derivative satisfies the equation .. math:: \sqrt{ 1 \mp x * x } * F^{(1)} (x) - 0 * F (u) = 1 and in the :ref:`standard math function differential equation` , :math:`A(x) = 0`, :math:`B(x) = \sqrt{1 \mp x * x }`, and :math:`D(x) = 1`. We use :math:`a`, :math:`b`, :math:`d` and :math:`z` to denote the Taylor coefficients for :math:`A [ X (t) ]`, :math:`B [ X (t) ]`, :math:`D [ X (t) ]`, and :math:`F [ X(t) ]` respectively. Taylor Coefficients Recursion ***************************** We define :math:`Q(x) = 1 \mp x * x` and let :math:`q` be the corresponding Taylor coefficients for :math:`Q[ X(t) ]`. It follows that .. math:: q^{(j)} = \left\{ \begin{array}{ll} 1 \mp x^{(0)} * x^{(0)} & {\rm if} \; j = 0 \\ \mp \sum_{k=0}^j x^{(k)} x^{(j-k)} & {\rm otherwise} \end{array} \right. It follows that :math:`B[ X(t) ] = \sqrt{ Q[ X(t) ] }` and from the equations for the :ref:`square root` that for :math:`j = 0 , 1, \ldots`, .. math:: :nowrap: \begin{eqnarray} b^{(0)} & = & \sqrt{ q^{(0)} } \\ b^{(j+1)} & = & \frac{1}{j+1} \frac{1}{ b^{(0)} } \left( \frac{j+1}{2} q^{(j+1) } - \sum_{k=1}^j k b^{(k)} b^{(j+1-k)} \right) \end{eqnarray} It now follows from the general :ref:`forward_theory@Standard Math Functions@Taylor Coefficients Recursion Formula` that for :math:`j = 0 , 1, \ldots`, .. math:: :nowrap: \begin{eqnarray} z^{(0)} & = & F ( x^{(0)} ) \\ e^{(j)} & = & d^{(j)} + \sum_{k=0}^{j} a^{(j-k)} * z^{(k)} \\ & = & \left\{ \begin{array}{ll} 1 & {\rm if} \; j = 0 \\ 0 & {\rm otherwise} \end{array} \right. \\ z^{(j+1)} & = & \frac{1}{j+1} \frac{1}{ b^{(0)} } \left( \sum_{k=0}^j e^{(k)} (j+1-k) x^{(j+1-k)} - \sum_{k=1}^j b^{(k)} (j+1-k) z^{(j+1-k)} \right) \\ z^{(j+1)} & = & \frac{1}{j+1} \frac{1}{ b^{(0)} } \left( (j+1) x^{(j+1)} - \sum_{k=1}^j k z^{(k)} b^{(j+1-k)} \right) \end{eqnarray} {xrst_end asin_forward}